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EXPONENTIAL SERIES

EXPONENTIAL & LOGARITHMIC SERIES

1. The number e

1
The sum of the infinite series |+ —+—+—+....4+% is denoted by the number e.
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Note :

(i) The number lies between 2 and 3. Approximate value of e = 2.718281828.

(ii) e is an irrational number. (i.e., ¢ £ Q)

2. Exponential Series

Expansion of any power x to the number e is the exponential series.
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1.e., [ =1+F+;+?+w=z (WhereX ER)
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(i) Exponential theorem :

Let a > 0 then for all real value of x,
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a* =1+x(log,a) +%(loge a)’ +%(loge a)’ +..=

(ii) Some standard deductions from exponential series :
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(ii) e‘=1+F+5+§+ {Puttingx =—1 in (¢*)}
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3. Logarithmic Series : If (|x|<1), then
x> x x* = o X"
10ge(1+x)=x—7+?—7+----°OZZ(—1) l-? is called as logarithmic series.
n-1

Some standard deductions from logarithmic series :
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(i) log(1+x)—log(1-x) = log(;—xj e [x +X?+X?+ J
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(iii) log(1+x)+log(1—x)=10g(1—x‘)=—2(7+7+?+....j

Note :
(i) Naperian or Natural log can be converted into common by using following relation :
log,, N=log, N x0.43429448
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MATHEMATICAL INDUCTION

Mathematical statement:

Statements invovling mathematical reations are known as the mathematical statements. For example: 2 divides
16, (x + 1) is a factor of x*—3x+2.

The priciple of mathematical induction:

(i) First principle of mathematical induction:-
Let P(x) be a statement involving the natural number in such that
(1) P(1) is true i.e. P(n) is true for n = 1.
(i) P(m+1) is true whenever P(m) is true.
then P(n) is true for all natural numbers n.
(i) Second principle of mathematical induction:
Let P(n) be a statement involving the natural number n such that
(i) P(1)is true
(ii)) P(m+1) is true, whenever P(n) is true \vp, where |<n<m-

then P(n) is true for all natural numbers.
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